Advances and Challenges in Conversational Recommender Systems: A Survey
论文链接:
https://arxiv.org/abs/2101.09459
论文作者:
高崇铭(中国科学技术大学),雷文强(新加坡国立大学),何向南(中国科学技术大学),Maarten de Rijke(荷兰阿姆斯特丹大学),Tat-Seng Chua(新加坡国立大学)
注:本文根据 tutorial [1] 深度扩展。
CRSs的定义与架构
▲ 图1. CRSs的架构
目前,CRSs 还没有主流、统一的定义。本文将 CRS 定义为:能通过实时的多轮对话,探出用户的动态喜好,并采取相应措施的推荐系统(“A recommendation system that can elicit the dynamic preferences of users and take actions based on their current needs through real-time multiturn interactions using natural language.”)。 其架构可以用三个模块来组成,其中一个用户接口模块(User Interface)负责直接与用户进行交互;一个推荐引擎(Recommender Engine)负责推荐工作;还有一个最为核心的对话策略模块(Conversation Strategy Module)负责统筹整个系统的任务、决定交互的逻辑。本文总结了五个具有挑战的任务和研究方向,分别对应到这三个模块中。
CRSs的定位与作用
3.1 CRSs与传统推荐系统的区别
传统推荐系统是静态的:其从用户的历史交互信息中来估计用户偏好。而 CRSs 是动态地与用户进行交互,在模型有不确定的地方,可以主动咨询用户。故 CRSs 能解决传统推荐系统做不到的一些事儿。 一方面,传统推荐系统不能准确的估计用户目前具体喜欢什么东西(What exactly does a user like?)这是由于用户的历史记录通常很稀疏,而且充满噪声。举例来说,用户可能做出错误决策,从而购买过一个不喜欢的东西。且用户的喜好是会随着时间改变的。 另一方面,传统推荐系统不能得知为什么用户喜欢一个东西(Why does a user like an item?)举例来说,用户可能由于好奇购买一个东西,可能由于受朋友影响购买一个东西。不同理由下的购买,其喜好动机和程度都是不一样的。 受益于 CRSs 的交互能力,CRSs 能解决传统推荐系统做不到的以上两点内容。系统在不确定用户具体偏好,以及为什么产生该偏好时,直接向用户询问即可。
4.2 多轮对话推荐策略 CRSs 的一个核心任务是关注如何问问题,即什么时候问问题,什么时候做推荐。本文总结了集中模式,包括“问一轮推一轮”、“问 X 轮推一轮”,“问 X 轮推 Y 轮”几种方式。其中 X 和 Y 可固定或由模型决定。图 3 给出了一个“问 X 轮推 Y 轮”的 CRS 模型示意图。 除了提问以外,CRSs 也可考虑其他多轮对话策略,如加入闲聊以增加趣味,或者加入说服,协商等多样化的功能以进一步引导对话。原文表 2 总结了 CRSs 的多轮对话策略。
[1] Wenqiang Lei, Xiangnan He, Maarten de Rijke, Tat-Seng Chua. 2020. Conversational Recommendation: Formulation, Methods, and Evaluation. SIGIR‘20 Tutorial.
[2] Dietmar Jannach and Ahtsham Manzoor. 2020. End-to-End Learning for Conversational Recommendation: A Long Way to Go? Proceedings of the 7th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems co-located with 14th ACM Conference on Recommender Systems (RecSys 2020) (2020).
[3] Wenqiang Lei, Gangyi Zhang, Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, and Tat-Seng Chua. 2020. Interactive Path Reasoning on Graph for Conversational Recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20). 2073–2083.
[4] Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-Yen Kan, and Tat-Seng Chua. 2020. Estimation-Action-Reflection: Towards Deep Interaction Between Conversational and Recommender Systems. In Proceedings of the 13th International Conference on Web Search and Data Mining (WSDM’20). ACM, 304–312.
[5] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. 2020. Bias and Debias in Recommender System: A Survey and Future Directions. arXiv preprint arXiv:2010.03240 (2020).